182 research outputs found

    A heat transfer with a source: the complete set of invariant difference schemes

    Full text link
    In this letter we present the set of invariant difference equations and meshes which preserve the Lie group symmetries of the equation u_{t}=(K(u)u_{x})_{x}+Q(u). All special cases of K(u) and Q(u) that extend the symmetry group admitted by the differential equation are considered. This paper completes the paper [J. Phys. A: Math. Gen. 30, no. 23 (1997) 8139-8155], where a few invariant models for heat transfer equations were presented.Comment: arxiv version is already officia

    Gas flow with straight transition line

    Get PDF
    An investigation was conducted on the limiting case of a gas flow when the constant pressure in the surrounding medium is exactly equal to the critical pressure for the given initial state of the gas

    Symmetry-preserving discrete schemes for some heat transfer equations

    Full text link
    Lie group analysis of differential equations is a generally recognized method, which provides invariant solutions, integrability, conservation laws etc. In this paper we present three characteristic examples of the construction of invariant difference equations and meshes, where the original continuous symmetries are preserved in discrete models. Conservation of symmetries in difference modeling helps to retain qualitative properties of the differential equations in their difference counterparts.Comment: 21 pages, 4 ps figure

    Symmetry group analysis of an ideal plastic flow

    Full text link
    In this paper, we study the Lie point symmetry group of a system describing an ideal plastic plane flow in two dimensions in order to find analytical solutions. The infinitesimal generators that span the Lie algebra for this system are obtained. We completely classify the subalgebras of up to codimension two in conjugacy classes under the action of the symmetry group. Based on invariant forms, we use Ansatzes to compute symmetry reductions in such a way that the obtained solutions cover simultaneously many invariant and partially invariant solutions. We calculate solutions of the algebraic, trigonometric, inverse trigonometric and elliptic type. Some solutions depending on one or two arbitrary functions of one variable have also been found. In some cases, the shape of a potentially feasible extrusion die corresponding to the solution is deduced. These tools could be used to thin, curve, undulate or shape a ring in an ideal plastic material

    Optical Lattice Polarization Effects on Hyperpolarizability of Atomic Clock Transitions

    Full text link
    The light-induced frequency shift due to the hyperpolarizability (i.e. terms of second-order in intensity) is studied for a forbidden optical transition, JJ=0→\toJJ=0. A simple universal dependence on the field ellipticity is obtained. This result allows minimization of the second-order light shift with respect to the field polarization for optical lattices operating at a magic wavelength (at which the first-order shift vanishes). We show the possibility for the existence of a magic elliptical polarization, for which the second-order frequency shift vanishes. The optimal polarization of the lattice field can be either linear, circular or magic elliptical. The obtained results could improve the accuracy of lattice-based atomic clocks.Comment: 4 pages, RevTeX4, 2 eps fig

    Group properties and invariant solutions of a sixth-order thin film equation in viscous fluid

    Full text link
    Using group theoretical methods, we analyze the generalization of a one-dimensional sixth-order thin film equation which arises in considering the motion of a thin film of viscous fluid driven by an overlying elastic plate. The most general Lie group classification of point symmetries, its Lie algebra, and the equivalence group are obtained. Similar reductions are performed and invariant solutions are constructed. It is found that some similarity solutions are of great physical interest such as sink and source solutions, travelling-wave solutions, waiting-time solutions, and blow-up solutions.Comment: 8 page

    Symmetry reductions of a particular set of equations of associativity in twodimensional topological field theory

    Full text link
    The WDVV equations of associativity arising in twodimensional topological field theory can be represented, in the simplest nontrivial case, by a single third order equation of the Monge-Ampe`re type. By investigating its Lie point symmetries, we reduce it to various nonlinear ordinary differential equations, and we obtain several new explicit solutions.Comment: 10 pages, Latex, to appear in J. Phys. A: Math. Gen. 200

    Lie symmetry analysis and exact solutions of the quasi-geostrophic two-layer problem

    Full text link
    The quasi-geostrophic two-layer model is of superior interest in dynamic meteorology since it is one of the easiest ways to study baroclinic processes in geophysical fluid dynamics. The complete set of point symmetries of the two-layer equations is determined. An optimal set of one- and two-dimensional inequivalent subalgebras of the maximal Lie invariance algebra is constructed. On the basis of these subalgebras we exhaustively carry out group-invariant reduction and compute various classes of exact solutions. Where possible, reference to the physical meaning of the exact solutions is given. In particular, the well-known baroclinic Rossby wave solutions in the two-layer model are rediscovered.Comment: Extended version, 24 pages, 1 figur

    Ultrastable Optical Clock with Neutral Atoms in an Engineered Light Shift Trap

    Full text link
    An ultrastable optical clock based on neutral atoms trapped in an optical lattice is proposed. Complete control over the light shift is achieved by employing the 5s21S0→5s5p3P05s^2 {}^1S_0 \to 5s5p {}^3P_0 transition of 87Sr{}^{87}{\rm Sr} atoms as a "clock transition". Calculations of ac multipole polarizabilities and dipole hyperpolarizabilities for the clock transition indicate that the contribution of the higher-order light shifts can be reduced to less than 1 mHz, allowing for a projected accuracy of better than 10−17 10^{-17}.Comment: 4 pages, 2 figures, accepted for publication in Phys. Rev. Let

    Symmetry Analysis of Barotropic Potential Vorticity Equation

    Full text link
    Recently F. Huang [Commun. Theor. Phys. V.42 (2004) 903] and X. Tang and P.K. Shukla [Commun. Theor. Phys. V.49 (2008) 229] investigated symmetry properties of the barotropic potential vorticity equation without forcing and dissipation on the beta-plane. This equation is governed by two dimensionless parameters, FF and β\beta, representing the ratio of the characteristic length scale to the Rossby radius of deformation and the variation of earth' angular rotation, respectively. In the present paper it is shown that in the case F≠0F\ne 0 there exists a well-defined point transformation to set β=0\beta = 0. The classification of one- and two-dimensional Lie subalgebras of the Lie symmetry algebra of the potential vorticity equation is given for the parameter combination F≠0F\ne 0 and β=0\beta = 0. Based upon this classification, distinct classes of group-invariant solutions is obtained and extended to the case β≠0\beta \ne 0.Comment: 6 pages, release version, added reference for section
    • …
    corecore